100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
INDEFINITE INTEGRAL JEE ASSIGNMENT $7.99   Add to cart

Exam (elaborations)

INDEFINITE INTEGRAL JEE ASSIGNMENT

 2 views  0 purchase
  • Course
  • Institution

All types of jee questions covered till date

Preview 4 out of 35  pages

  • June 3, 2023
  • 35
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
  • Secondary school
  • 1
avatar-seller
286 Indefinite Integral




Properties of Integration, fundamental Integration formulae

Basic Level


1.
 sec x dx  [MP PET 1988,95; Rajasthan PET 1996]

 x   
(a) log tan     c (b) log(sec x  tan x )  c (c) log   x   c (d) log(sec x  tan c)  c
4 2 4 

2.
 5 sin x dx  [MP PET 1988]

(a) 5 cos x  c (b) 5 cos x  c (c) 5 sin x  c (d) 5 sin x  c

 (sec x  tan x) dx 
2
3. [MP PET 1987, 92]

1
(a) 2(sec x  tan x )  x  c (b) (sec x  tan x )3  c (c) sec x (sec x  tan x )  c (d) 2(sec x  tan x )  c
3

 cosec
2
4. x dx is equal to [MP PET 1999]

(a) cot x  C (b) cot x  C (c) tan 2 x  C (d)  cot 2 x  C

5.
 sec x tan x dx  [Rajasthan PET 2003]

(a) sec x  tan x  C (b) sec x  C (c) tan x  C (d)  sec x  C
sin x  cos x
6.
 1  sin 2 x
dx  [MP PET 1990]


(a) sin x  c (b) cos x  c (c) x  c (d) x 2  c

 (3cosec x  2 sin 3 x ) dx 
2
7. [AI CBSE 1981]

2  2  2
(a) 3 cot x  cos 3 x  c (b)   3 cot x  cos 3 x   c (c) 3 cot x  cos 3 x  c (d) None of these
3  3  3

1  cos 2 x
8.
 sin 2 x
dx  [MP PET 1993; Ranchi BIT 1982]

(a)  cot x  2 x  c (b) 2 cot x  2 x  c (c) 2 cot x  x  c (d) 2 cot x  x  c

9. The value of
 cot x dx is [Rajasthan PET 1995]

(a) log cos x  c (b) log tan x  c (c) log sin x  c (d) log sec x  c

 (x  5)
1
10. The value of 2
dx is [Karna


1 1 2
(a) c (b)  c (c) c (d)  2(x  5)3  c
x 5 x 5 (x  5)3

, Indefinite Integral 287

x2
11.
x 2
4
dx equals to [Rajasthan PET 2001]


(a) x  2 tan 1 (x / 2)  c (b) x  2 tan 1 (x / 2)  c (c) x  4 tan 1 (x / 2)  c (d) x  4 tan 1 (x / 2)  c


x sec x 3 dx 
2
12. [MNR 1986; Roorkee

1975]
1
(a) log(sec x 3  tan x 3 ) (b) 3(sec x 3  tan x 3 ) (c) log(sec x 3  tan x 3 ) (d) None of these
3
cos 2 x  1
13.
 cos 2 x  1 dx  [MP PET 2000]

(a) tan x  x  c (b) x  tan x  c (c) x  tan x  c (d)  x  cot x  c

 sin
1
14. (cos x)dx 

x x 2 x  x 2 x  x 2
(a) (b) (c) (d)
2 2 2 2

 (sin
1
15. x  cos 1 x ) dx  [MP PET 1990]

1 
(a) x  c (b) x (sin 1 x  cos 1 x )  c (c) x (cos 1 x  sin 1 x )  c (d) x c
2 2


x (tan 1 x  cot 1 x ) dx 
51
16. [MP PET 1991]


x 52 x 52
(a) (tan 1 x  cot 1 x )  c (b) (tan 1 x  cot 1 x )  c
52 52

x 52  x 52 
(c)  c (d)  c
104 2 52 2

x
1
17. The value of 4
dx is [Rajasthan PET 1995]

1 1 1 1
(a) c (b) c (c) c (d)  c
 3x 3 3x 3  4x3 3x 3

 a dx 
x
18. [Rajasthan PET 2003]


ax
(a) C (b) a x log a  C (c) log a  c (d) a x  C
log a


 a da 
x
19. [MP PET 1994, 96]


ax ax
(a) C (b) a x log e a  C (c) C (d) None of these
log e a x 1


 13
x
20. dx = [Kerala (Engg.) 2002]


13 x
(a) C (b) 13 x 1  C (c) 14 x  C (d) 14 x 1  C
log 13


e
x log a
21. . e x dx is equal to

(ae ) x ex
(a) (ae) x (b) (c) (d) None of these
log( ae ) 1  log a

,288 Indefinite Integral

a
3 x 3
22. dx  [Roorkee 1977]


a 3 x 3 a 3 x 3
(a) c (b) c (c) a 3 x  3 log a  c (d) 3 a 3 x  3 log a  c
log a 3 log a

e dx 
log(sin x)
23. [MP PET 1995]

(a) sin x  c (b) cos x  c (c) e log cos x  c (d) None of these

e
m log x
24. The value of dx is

x m 1 e m log x em em
(a) k (b) k (c) k (d) k
m 1 m log x x

e 5 log x  e 4 log x
25.
e 3 log x
 e 2 log x
dx  [MNR 1985]


x3
(a) e . 3 3 x  c (b) e 3 log x  c (c) c (d) None of these
3
1 5
26. If f ' (x )   x and f (1)  , then f (x ) 
x 2
x2 x2 x2 x2
(a) log x  2 (b) log x  1 (c) log x  2 (d) log x  1
2 2 2 2

27.
 1  sin x dx  [MP PET 1995]

1 x x 1 x x
(a)  sin  cos   c (b)  sin  cos   c (c) 2 1  sin x  c (d)  2 1  sin x  c
2 2 2 2 2 2



x
28. 1  sin dx  [IIT 1980; MP PET 1989]
2
1 x x  x x  x x  x x
(a)  cos  sin   c (b) 4  cos  sin   c (c) 4  sin  cos   c (d) 4  sin  cos   c
4 4 4  4 4  4 4  4 4

29.
 1  sin 2 x dx  .......... ......, x  (0,  / 4 ) [MP PET 1987]

(a)  sin x  cos x (b) sin x  cos x (c) tan x  sec x (d) sin x  cos x


dx
30.  [MP PET 1991]
1  sin x
(a) x  cos x  c (b) 1  sin x  c (c) sec x  tan x  c (d) sec x  tan x  c
cos x  1
31.
 cos x  1
dx  [MP PET 1989, 92]

x 1 x 1 x x
(a) 2 tan x c (b) tan  x  c (c) x  tan  c (d) x  2 tan c
2 2 2 2 2 2

32.
 1  cos x dx equals [Rajasthan PET 1996]

x x x x
(a) 2 2 sin c (b)  2 2 sin c (c)  2 2 cos c (d) 2 2 cos c
2 2 2 2


dx
33.  [MP PET 1990]
x  x 2

(a)
1 3/2
3
x 
 (x  2)  c  (b)
3

2 3/2
x 
 (x  2)  c (c)
1
3
 
(x  2)  x  c (d)
2
3
 
(x  2)  x  c

, Indefinite Integral 289


dx
34.  [AISSE 1989]
x a  x b

(a)
2
3(b  a)

(x  a)  (x  b)  c (b)
2
3(a  b)
 
(x  a)  (x  b)  c


(c)
2
3(a  b)

(x  a)  (x  b)  c (d) None of these


3x3  2 x
35.
 x
dx  [Roorkee 1976]


(a) x 3  x  c (b) x 3  x  c (c) x 3  2 x  c (d) x 3  4 x  c

5(x 6  1)
36.
 x2 1
dx 

5 3
(a) 5(x 7  x ) tan 1 x  c (b) x 5  x  5x  c
3

(c) 3 x 4  5 x 2  15 x  c (d) 5 tan 1 (x 2  1)  log( x 2  1)  c


 tan x  cot x 
dx
37. [MP PET 1991]

cos 2 x sin 2 x sin 2 x cos 2 x
(a) c (b) c (c)  c (d)  c
4 4 4 4

 1
38.
  2 sin x  x  dx is equal to [MP PET 1999]


1 1
(a) 2 cos x  log x  C (b) 2 cos x  log x  C (c)  2 sin x  C (d)  2 cos x  C
x2 x2

39.
 sin 2 x cos 3 x dx  [Roorkee 1976]

1 1  1 1  1 1
(a)  cos x  cos 5 x   c (b)  cos x  cos 5 x   c (c) cos x  cos 5 x  c (d) cos x  cos 5 x  c
2 5  2 5  5 5


 (sin 2 x  cos 2 x)dx 
1
40. If sin(2 x  a)  b, then [Roorkee 1978; MP PET 2001]
2
  5 5
(a) a  ,b  0 (b) a   ,b  0 (c) a  , b  any constant (d) a   , b  any constant
4 4 4 4


 (sin 2 x  cos 2 x ) dx 
1
41. If sin(2 x  c)  a, then the value of a and c is [Roorkee 1978]
2
  
(a) c  and a  k (an arbitrary constant) (b) c   and a 
4 4 2

(c) c  and a is an arbitrary constant (d) None of these
2


 sin 5 x cos 3 x dx  
cos 8 x
42. If  A, then A= [MP PET 1992]
16
sin 2 x cos 2 x
(a)  constant (b)   constant (c) Constant (d) None of these
16 4

43. If
 2 1  sin x dx  4 cos(ax  b)  C then the value of (a,b) is [UPSEAT 2002]

1  
(a) , (b) 1, (c) 1,1 (d) None of these
2 4 2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller riyashah120527. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

79373 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.99
  • (0)
  Add to cart