Your text
January here 1
11, 2013
Coastal and Ocean Engineering
John Fenton
TU Wien, Institut für Wasserbau und Ingenieurhydrologie
Karlsplatz 13/E222, A-1040 Wien
fenton@kw.tuwien.ac.at
Abstract
This course introduces maritime engineering, encompassing coastal and ocean engineering. It con-
centrates on providing an understanding of the many processes at work when the tides, storms and
waves interact with the natural and human environments. The course will be a mixture of descrip-
tion and theory – it is hoped that by understanding the theory that the practice will be made all the
easier. There is nothing quite so practical as a good theory.
Table of Contents
References . . . . . . . . . . . . . . . . . . . . . . . 2
1. Introduction . . . . . . . . . . . . . . . . . . . . . 6
1.1 Physical properties of seawater . . . . . . . . . . . . . 6
2. Introduction to Oceanography . . . . . . . . . . . . . . . 7
2.1 Ocean currents . . . . . . . . . . . . . . . . . . 7
2.2 El Niño, La Niña, and the Southern Oscillation . . . . . . . . 10
2.3 Indian Ocean Dipole . . . . . . . . . . . . . . . . 12
2.4 Continental shelf flow . . . . . . . . . . . . . . . . 13
3. Tides . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . 15
3.2 Tide generating forces and equilibrium theory . . . . . . . . 15
3.3 Dynamic model of tides . . . . . . . . . . . . . . . 17
3.4 Harmonic analysis and prediction of tides . . . . . . . . . . 19
4. Surface gravity waves . . . . . . . . . . . . . . . . . . 21
4.1 The equations of fluid mechanics . . . . . . . . . . . . 21
4.2 Boundary conditions . . . . . . . . . . . . . . . . 28
4.3 The general problem of wave motion . . . . . . . . . . . 29
4.4 Linear wave theory . . . . . . . . . . . . . . . . . 30
4.5 Shoaling, refraction and breaking . . . . . . . . . . . . 44
4.6 Diffraction . . . . . . . . . . . . . . . . . . . 50
4.7 Nonlinear wave theories . . . . . . . . . . . . . . . 52
5. The calculation of forces on ocean structures . . . . . . . . . . . 55
5.1 Structural element much smaller than wavelength – drag and inertia
forces . . . . . . . . . . . . . . . . . . . . . 55
1
,Coastal and Ocean Engineering John Fenton
5.2 Structural element comparable with wavelength – diffraction forces . . 57
6. Wind generation of waves and wave prediction . . . . . . . . . . 59
6.1 Predicting waves in deep water . . . . . . . . . . . . . 59
7. Tsunami . . . . . . . . . . . . . . . . . . . . . . 61
7.1 Introduction . . . . . . . . . . . . . . . . . . . 61
7.2 When the first evidence of a tsunami is recession of the sea . . . . 64
7.3 Some aspects of tsunami behaviour . . . . . . . . . . . . 64
7.4 Tsunami generated by the Krakatau eruption of 1883 . . . . . . 67
7.5 An investigation of tsunami risk on an island near the Sunda Strait . . 67
8. Coastal engineering . . . . . . . . . . . . . . . . . . 69
8.1 An example of a beach investigation – Mission Bay, Auckland . . . 69
8.2 Coastal management . . . . . . . . . . . . . . . . 73
8.3 An example from Spain – Puerto Banus . . . . . . . . . . 84
References
ASCE Task Committee on Forces on Inclined and Vertical Wall Structures (1995), Wave Forces on Inclined and
Vertical Wall Structures, ASCE, New York.
Australia, G. (2004), Small threat, but warning sounded for tsunami research, AusGeo News 75(September), 4–
7.
Barber, N. F. (1969), Water Waves, Wykeham.
Bascom, W. (1964), Waves and Beaches, Doubleday.
Benjamin, T. B. & Lighthill, M. J. (1954), On cnoidal waves and bores, Proc. Roy. Soc. London Ser. A 224, 448–
460.
Bird, E. C. F. (1984), Coasts: An Introduction to Coastal Geomorphology, Australian National University Press,
Canberra.
Cartwright, D. E. (1999), Tides: A Scientific History, second edn, Cambridge.
Dean, R. G. & Dalrymple, R. A. (1984), Water Wave Mechanics for Engineers and Scientists, Prentice-Hall.
Dingemans, M. W. (1997a), Water wave propagation over uneven bottoms. Part 1 – Linear wave propagation,
Vol. 13 of Advanced Series on Ocean Engineering, World Scientific, Singapore.
Dingemans, M. W. (1997b), Water wave propagation over uneven bottoms. Part 2 – Nonlinear wave propagation,
Vol. 13 of Advanced Series on Ocean Engineering, World Scientific, Singapore.
Fenton, J. D. (1979), A high-order cnoidal wave theory, J. Fluid Mechanics 94, 129–
161. http://johndfenton.com/Papers/Fenton79-A-high-order-cnoidal-wave-theory.pdf
Fenton, J. D. (1985), A fifth-order Stokes theory for steady waves, J. Waterway Port Coastal and Ocean Engng
111, 216–234. http://johndfenton.com/Papers/Fenton85d-A-fifth-order-Stokes-theory-for-steady-waves.pdf
Fenton, J. D. (1988), The numerical solution of steady water wave problems, Computers and Geosciences 14, 357–
368. http://johndfenton.com/Papers/Fenton88-The-numerical-solution-of-steady-water-wave-problems.pdf
Fenton, J. D. (1990), Nonlinear wave theories, in B. Le Méhauté & D. M. Hanes, eds, ‘The Sea - Ocean Engineering
Science, Part A’, Vol. 9, Wiley, New York, pp. 3–25. http://johndfenton.com/Papers/Fenton90b-Nonlinear-
wave-theories.pdf
Fenton, J. D. (1993), Simulating wave shoaling with boundary integral equations, in ‘Proc. 11th Australasian Con-
ference on Coastal and Ocean Engng’, Townsville, pp. 71–76. http://johndfenton.com/Papers/Fenton93-
Simulating-wave-shoaling-with-boundary-integral-equations.pdf
Fenton, J. D. (1999a), The cnoidal theory of water waves, in J. B. Herbich, ed., ‘Developments in Offshore En-
gineering’, Gulf, Houston, chapter 2, pp. 55–100. http://johndfenton.com/Papers/Fenton99Cnoidal-
The-cnoidal-theory-of-water-waves.pdf
2
,Coastal and Ocean Engineering John Fenton
Fenton, J. D. (1999b), Numerical Methods for Nonlinear Waves, in P. L.-F. Liu, ed., ‘Ad-
vances in Coastal and Ocean Engineering’, Vol. 5, World Scientific, Singapore, pp. 241–324.
http://johndfenton.com/Papers/Fenton99Liu-Numerical-methods-for-nonlinear-waves.pdf
Fenton, J. D. & McKee, W. D. (1990), On calculating the lengths of water waves, Coastal Engineering 14, 499–
513. http://johndfenton.com/Papers/Fenton90c+McKee-On-calculating-the-lengths-of-water-waves.pdf
Gourlay, M. R. (1996), History of Coastal Engineering in Australia, in N. C. Kraus, ed., ‘History and Heritage
of Coastal Engineering’, ASCE, New York.
Guo, J. (2002), Simple and explicit solution of wave dispersion equation, Coastal Engineering 45, 71–74.
Hamill, R., Christian, C. D. & Fenton, J. D. (1989), Investigation of beach erosion at Mis-
sion Bay, in ‘Proc. 9th Australasian Conf. Coastal & Ocean Engng’, Adelaide, pp. 219–
223. http://johndfenton.com/Papers/Hamill89+Christian+Fenton-Investigation-of-beach-
erosion-at-Mission-Bay.pdf
Hedges, T. S. (1995), Regions of validity of analytical wave theories, Proc. Inst. Civ. Engnrs, Water, Maritime
and Energy 112, 111–114.
Herbich, J. B. (1999a), Developments in Offshore Engineering: Wave Phenomena and Offshore Topics, Gulf,
Houston.
Herbich, J. B. (1999b), Handbook of coastal engineering, McGraw-Hill.
Infeld, E. & Rowlands, G. (1990), Nonlinear waves, solitons and chaos, Cambridge.
Kajiura, K. & Shuto, N. (1990), Tsunamis, in B. Le Méhauté & D. M. Hanes, eds, ‘The Sea - Ocean Engineering
Science, Part A’, Vol. 9, Wiley, New York, pp. 395–420.
Khandekar, M. L. (1989), Operational Analysis and Prediction of Ocean Wind Waves, Springer.
Kinsman, B. (1984), Wind Waves, Dover, New York.
Kowalik, Z. & Murty, T. S. (1993), Numerical Modeling of Ocean Dynamics, World Scientific, Singapore.
Le Méhauté, B. (1976), An Introduction to Hydrodynamics and Water Waves, Springer, New York.
Le Méhauté, B. & Hanes, D. M. (1990), The Sea - Ocean Engineering Science, Wiley, New York.
LeBlond, P. H. & Mysak, L. A. (1978), Waves in the Ocean, Elsevier.
Lighthill, M. J. (1978), Waves in Fluids, Cambridge.
MacCamy, R. C. & Fuchs, R. A. (1954), Wave forces on piles: a diffraction theory, Technical Memorandum 69,
U.S. Army Corps of Engineers, Beach Erosion Board.
Massel, S. R. (1989), Hydrodynamics of Coastal Zones, Elsevier, Amsterdam.
Massel, S. R. (1999), Fluid Mechanics for Marine Ecologists, Springer.
Nelson, R. C. (1994), Depth limited design wave heights in very flat regions, Coastal Engineering 23, 43–59.
Nelson, R. C. (1997), Height limits in top down and bottom up wave environments, Coastal Engineering 32, 247–
254.
Nielsen, P. (1992), Coastal Bottom Boundary Layers and Sediment Transport, World Scientific, Singapore.
Peregrine, D. H. (1972), Equations for water waves and the approximation behind them, in R. E. Meyer, ed., ‘Waves
on Beaches and Resulting Sediment Transport’, Academic, New York.
Pond, S. & Pickard, G. L. (1983), Introductory Dynamical Oceanography, second edn, Pergamon.
Rahman, M. (1995), Water Waves : relating modern theory to advanced engineering applications, Oxford.
Sarawagi, T. (1995), Coastal Engineering – Waves, Beaches, Wave-Structure Interactions, first etc edn, Unknown.
Sarpkaya, T. & Isaacson, M. (1981), Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinhold,
New York.
Schwartz, L. W. & Fenton, J. D. (1982), Strongly-nonlinear waves, in M. Van Dyke, J. V. Wehausen
& J. L. Lumley, eds, ‘Ann. Rev. Fluid Mech.’, Vol. 14, Annual Reviews, Palo Alto, pp. 39–
60. http://johndfenton.com/Papers/Schwartz82-Strongly-nonlinear-waves.pdf
3
, Coastal and Ocean Engineering John Fenton
Silvester, R. (1974), Coastal Engineering, Elsevier.
Simkin, T. & Fiske, R. S. (1983), Krakatau 1883, Smithsonian, Washington.
Sleath, J. F. A. (1984), Sea Bed Mechanics, Wiley, New York.
Sobey, R. J., Goodwin, P., Thieke, R. J. & Westberg, R. J. (1987), Application of Stokes, cnoidal, and Fourier
wave theories, J. Waterway Port Coastal and Ocean Engng 113, 565–587.
Sorensen, R. M. (1997), Basic Coastal Engineering, Chapman & Hall, New York.
Stoker, J. J. (1957), Water Waves, Academic.
Symons, G. J. (1888), The Eruption of Krakatoa, and Subsequent Phenomena, Report, Krakatoa Committee of
the Royal Society, London.
Tricker, R. A. R. (1964), Bores, Breakers, Waves and Wakes, Mills and Boon.
USCERC (1975), Shore Protection Manual, U.S. Army Coastal Engineering Research Center, Fort Belvoir, Vir-
ginia.
Wantanabe, A., Isobe, M. & Kraus, N. (1999), International Handbook Of Coastal Engineering And Management,
Academic.
Wehausen, J. V. & Laitone, E. V. (1960), Surface Waves, in S. Flügge, ed., ‘Encyclopaedia of Fluid Mechanics’,
Vol. 9, Springer. http://www.coe.berkeley.edu/SurfaceWaves/
Wharton, W. J. L. (1888), On the seismic sea waves caused by the eruption of Krakatoa, August 26th and 27th,
1883, in ‘Symons (1888)’, pp. 89–151.
Wiegel, R. L. (1964), Oceanographical Engineering, Prentice-Hall.
Williams, J. M. (1981), Limiting gravity waves in water of finite depth, Phil. Trans. Roy. Soc. London Ser. A
302(1466), 139–188. http://www.jstor.org/stable/36960
Yokoyama, I. (1981), A geophysical interpretation of the 1883 Krakatau eruption, J. Volcanology and Geothermal
Res. 9, 359–378.
4