100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Linear Algebra in Twenty Five Lectures $7.49   Add to cart

Class notes

Linear Algebra in Twenty Five Lectures

 5 views  0 purchase
  • Course
  • Institution
  • Book

Lecture notes study book Lectures on Computational Fluid Dynamics, Mathematical Physics, and Linear Algebra of K Gustafson - ISBN: 9789814497138 (ITS LECTURE NOTES)

Preview 4 out of 395  pages

  • February 12, 2022
  • 395
  • 2021/2022
  • Class notes
  • Associate professor
  • All classes
avatar-seller
Linear Algebra in Twenty Five Lectures
Tom Denton and Andrew Waldron
March 27, 2012




Edited by Katrina Glaeser, Rohit Thomas & Travis Scrimshaw




1

,Contents
1 What is Linear Algebra? 12

2 Gaussian Elimination 19
2.1 Notation for Linear Systems . . . . . . . . . . . . . . . . . . . 19
2.2 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . 21

3 Elementary Row Operations 27

4 Solution Sets for Systems of Linear Equations 34
4.1 Non-Leading Variables . . . . . . . . . . . . . . . . . . . . . . 35

5 Vectors in Space, n-Vectors 43
5.1 Directions and Magnitudes . . . . . . . . . . . . . . . . . . . . 46

6 Vector Spaces 53

7 Linear Transformations 58

8 Matrices 63

9 Properties of Matrices 72
9.1 Block Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.2 The Algebra of Square Matrices . . . . . . . . . . . . . . . . 73

10 Inverse Matrix 79
10.1 Three Properties of the Inverse . . . . . . . . . . . . . . . . . 80
10.2 Finding Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3 Linear Systems and Inverses . . . . . . . . . . . . . . . . . . . 82
10.4 Homogeneous Systems . . . . . . . . . . . . . . . . . . . . . . 83
10.5 Bit Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

11 LU Decomposition 88
11.1 Using LU Decomposition to Solve Linear Systems . . . . . . . 89
11.2 Finding an LU Decomposition. . . . . . . . . . . . . . . . . . 90
11.3 Block LDU Decomposition . . . . . . . . . . . . . . . . . . . . 94




2

,12 Elementary Matrices and Determinants 96
12.1 Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12.2 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . 100

13 Elementary Matrices and Determinants II 107

14 Properties of the Determinant 116
14.1 Determinant of the Inverse . . . . . . . . . . . . . . . . . . . . 119
14.2 Adjoint of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . 120
14.3 Application: Volume of a Parallelepiped . . . . . . . . . . . . 122

15 Subspaces and Spanning Sets 124
15.1 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
15.2 Building Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 126

16 Linear Independence 131

17 Basis and Dimension 139
n
17.1 Bases in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

18 Eigenvalues and Eigenvectors 147
18.1 Matrix of a Linear Transformation . . . . . . . . . . . . . . . 147
18.2 Invariant Directions . . . . . . . . . . . . . . . . . . . . . . . . 151

19 Eigenvalues and Eigenvectors II 159
19.1 Eigenspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

20 Diagonalization 165
20.1 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . 165
20.2 Change of Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 166

21 Orthonormal Bases 173
21.1 Relating Orthonormal Bases . . . . . . . . . . . . . . . . . . . 176

22 Gram-Schmidt and Orthogonal Complements 181
22.1 Orthogonal Complements . . . . . . . . . . . . . . . . . . . . 185

23 Diagonalizing Symmetric Matrices 191




3

, 24 Kernel, Range, Nullity, Rank 197
24.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

25 Least Squares 206

A Sample Midterm I Problems and Solutions 211

B Sample Midterm II Problems and Solutions 221

C Sample Final Problems and Solutions 231

D Points Vs. Vectors 256

E Abstract Concepts 258
E.1 Dual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
E.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
E.3 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
E.4 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
E.5 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

F Sine and Cosine as an Orthonormal Basis 262

G Movie Scripts 264
G.1 Introductory Video . . . . . . . . . . . . . . . . . . . . . . . . 264
G.2 What is Linear Algebra: Overview . . . . . . . . . . . . . . . 265
G.3 What is Linear Algebra: 3 × 3 Matrix Example . . . . . . . . 267
G.4 What is Linear Algebra: Hint . . . . . . . . . . . . . . . . . . 268
G.5 Gaussian Elimination: Augmented Matrix Notation . . . . . . 269
G.6 Gaussian Elimination: Equivalence of Augmented Matrices . . 270
G.7 Gaussian Elimination: Hints for Review Questions 4 and 5 . . 271
G.8 Gaussian Elimination: 3 × 3 Example . . . . . . . . . . . . . . 273
G.9 Elementary Row Operations: Example . . . . . . . . . . . . . 274
G.10 Elementary Row Operations: Worked Examples . . . . . . . . 277
G.11 Elementary Row Operations: Explanation of Proof for Theo-
rem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
G.12 Elementary Row Operations: Hint for Review Question 3 . . 281
G.13 Solution Sets for Systems of Linear Equations: Planes . . . . . 282
G.14 Solution Sets for Systems of Linear Equations: Pictures and
Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283


4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller joyalsebastian. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

81531 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.49
  • (0)
  Add to cart