100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
PNB 2XB3 QUESTIONS & ANSWERS GRADED A+ $9.69   Add to cart

Exam (elaborations)

PNB 2XB3 QUESTIONS & ANSWERS GRADED A+

 9 views  0 purchase
  • Course
  • PNB 2XB3
  • Institution
  • PNB 2XB3

sodium potassium pump - ️️enzyme that transports 3 sodium to the outside, and it transports 2 potassium to the inside using the hydrolysis of ATP - creates more sodium outside and more potassium inside and creates a concentration gradient Midline, ipsilateral and contrelateral - ️️line s...

[Show more]

Preview 4 out of 36  pages

  • September 17, 2024
  • 36
  • 2024/2025
  • Exam (elaborations)
  • Questions & answers
  • PNB 2XB3
  • PNB 2XB3
avatar-seller
PatrickKaylian
PNB 2XB3
sodium potassium pump - ✔️✔️enzyme that transports 3 sodium to the outside, and it
transports 2 potassium to the inside using the hydrolysis of ATP - creates more sodium
outside and more potassium inside and creates a concentration gradient

Midline, ipsilateral and contrelateral - ✔️✔️line separating left and right of the entire
nervous system - ipsilateral means the same side of something and contralateral means
the opposite side of something

Nissl stain showed (Nissl) - ✔️✔️Nissl used basic dyes (cresyl violet, thionine) to stain
the ER (RNA in the nucelus) to reveal cell bodies


Nissl Stain - ✔️✔️piece of neural tissue is treated with a Nissl Stain solution that will
dye the cell bodies of neurons - there are areas of varying density called cell layers
(usually 6)

Neurons - ✔️✔️cells with an axon that produce action potentials, are enclosed in a lipid
bilayer membrane and contain organelles, but have unique morphology and they are
electrically excitable - action potentials are not unique to neurons (muscle cells produce
them too)


how many neurons are in the brain and what is the power of the brain - ✔️✔️100 billion
neurons, and it is about 20W

how large are neurons - ✔️✔️10 microns

Central Nervous System (CNS) - ✔️✔️all the parts within bone (spinal cord, thalamus,
brainstem, cortex...)

Peripheral Nervous System (PNS) - ✔️✔️not within bone (peripheral nerves)

brainstem - ✔️✔️includes the medulla, midbrain, and the pons

spine - ✔️✔️cervical, thoracic, lumbar, and sacral sections with each vertebrae
numbered - can then be used to classify which parts of the skin&nerves come from
where


Dendrites - ✔️✔️receive signals/neurotransmitters from neighbouring neurons (input) -
not all neurons have dendrites but most do

,Axons - ✔️✔️send the signals to other neurons (output) - axons will often branch into
many pathways, but only one will come off of the cell body

Action potentials - ✔️✔️rapid increases and then decreases of voltage along the action
potential (caused by rapid depolarization to the threshold)


Astroc Neuroscience - ✔️✔️study of the neurons and nervous systems

ytes (CNS) - ✔️✔️glial cells that maintain ionic environment

oligodendrocites and schwann cells - ✔️✔️glial cell that forms myelin around neurons

Microglia - ✔️✔️glial cells that scavenge cellular debris


cerebrospinal fluid (CSF) - ✔️✔️aqueous saline solution surrounding neurons that
contains sodium, potassium, chloride, and other ions in solution

neuronal membrane - ✔️✔️impermeable to the movement of ions, but ions can cross
by either ion transporters and ion channels


Ion transp Nissl stain showed (Broadmann) - ✔️✔️found that different areas of the
cerebral cortex had distinct cytoarchitectonic (density of neurons) appearances (52
cortical areas, now called broadmann's areas) - evolutionailly older cortex will have
fewer layers

orters - ✔️✔️active transporters (enzymes) that use energy to actively move selected
ions against concentration gradients to create ion concentration gradients

Ion channels - ✔️✔️do not use energy and they allow ions to diffuse down a
concentration gradient and are selectively permeable to only certain ions


neuronal membrane permeability (at rest) - ✔️✔️primarily permeable to potassium
because the membrane contains leak potassium ion channels, allowing potassium to
diffuse out of the cell, which makes the inside of the cell negative when potassium flows
out of the cell

equalibrium potential - ✔️✔️The potential at which the net flow of an ion would be zero
due to electrostatic and diffusion forces being equal and opposite - still movement, but
no net movement

,Diffusion of potassium - ✔️✔️when potassium diffuses out of the cell down its
concentration gradient (outside of the cell)

Electrostatic force of potassium - ✔️✔️as potassium diffuses out, the inside becomes
progressively more negative, and the positive potassium is attracted to the inside

Nernst equation - ✔️✔️allows us to calculate the equilibrium potential (Ex) for a
particular ion (X) using the electric charge, the outside concentration and the inside
concentration

equilibrium potentials for potassium and sodium - ✔️✔️EK is around -84, ENa is
around +67

Membrane potential at rest is most similar to - ✔️✔️neuron is primarily permeable to
potassium, so the resting potential is close to EK, but is not the same as the neuron is
still somewhat permeable to other ions

neuraxis - ✔️✔️axis of the nervous system - in humans, the neuraxis curves at the
brain

Neuraxis before curving - ✔️✔️dorsal is behind, ventral is infront, caudal is down, and
rostral is up

Neuraxis after curving - ✔️✔️dorsal is up, ventral is down, caudal is back, and rostral is
front

General axis - ✔️✔️superior is above, inferior is below, anterior is infront of, and
posterior is behind


Decussate, medial and lateral - ✔️✔️to cross over to the other side of the brain, medial
is near the midline and lateral is far from the midline

Proximal and distal - ✔️✔️Proximal is close to the point of reference and distal is far
from the point of reference

Efferent and Afferent - ✔️✔️Efferent is projecting away from reference and afferent is
projecting towards reference

coronal plane - ✔️✔️separates the front of the brain from the back (vertical axis)

sagittal plane - ✔️✔️separates the left from the right (vertical)

, horizontal plane - ✔️✔️separates the top from the bottom (horizontal)

midsagittal plane and parasagittal plane - ✔️✔️divides the in the middle, divides into
quarters

4 rules of the nervous system - ✔️✔️1. symmetry
2. localization of function
3. Contralaterality
4. Topography

Symmetry of the nervous system - ✔️✔️when looking at a coronal section, we can see
that the brain is mostly bilaterally symmetric (right is mostly the same as the left)

Localization of Function - ✔️✔️different parts of the nervous system have different
specialized functions, like how the different lobes in the brain all have different functions

Contralaterality in the brain - ✔️✔️each side of the nervous system controls the
opposite side of the body and each side of the physical field activates the opposite side
of the brain

Topography in the nervous system - ✔️✔️there is a "map" of the body on different
areas of the brain based on where each area controls

electric potential - ✔️✔️when the concentration of charged ions varies on either side of
the membrane

how was it determined that potassium is a main contributor to the membrane potential –
✔️✔️When we record the membrane potential while altering how much potassium is in
the bath around the neuron (altering concentration gradient), we find that as the
potassium concentration in the bath rises, the resting membrane potential becomes
more positive

Goldman Equation (GHK) - ✔️✔️calculates Vm based on the concentrations and
relative permeabilities of all ions crossing the membrane, which reflects the ratio of
internal to external concentrations of all ions and their permeability coefficients - still a
slight discrepancy due to the sodium potassium pump

permeability of ions - ✔️✔️Typically, PK:PNa:PCl = 1:0.04:0.45

"Feeling" - ✔️✔️Sensory stimuli evoke electrical impulse (action potentials) that travel
to the brain where the stimulus is perceived - proven by local anestesia, stroke, and
electrical brain stimulation

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller PatrickKaylian. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $9.69. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78252 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$9.69
  • (0)
  Add to cart