Class notes
Advanced Calculus Folland Solutions Manual PDF
Complete Answers Solutions Manual PDF for Advanced Calculus by Gerald B Folland. Includes the answers for all of the exercises of the book.
[Show more]
Preview 4 out of 72 pages
Uploaded on
March 20, 2024
Number of pages
72
Written in
2023/2024
Type
Class notes
Professor(s)
Pepeu palala
Contains
All classes
advanced calculus folland solutions manual pdf
advanced calculus folland solutions manual
advanced calculus folland solutions
solutions manual pdf advanced calculus folland
solutions manual advanced c
Book Title: Advanced Calculus
Author(s): Cram101 Textbook Reviews, Gerald Folland
Edition: Unknown
ISBN: 9780201799378
Edition: Unknown
Institution
University of San Andrés (UdeSA

)
Course
MATH101
All documents for this subject (17)
$9.99
Added
Add to cart
Add to wishlist
100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached
Instructor’s Solution Manual for
ADVANCED CALCULUS
Gerald B. Folland
,
,Contents
1 Setting the Stage 1
1.1 Euclidean Spaces and Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Subsets of Euclidean Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Limits and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Differential Calculus 8
2.1 Differentiability in One Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Differentiability in Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Functional Relations and Implicit Functions: A First Look . . . . . . . . . . . . . . . . . . 10
2.6 Higher-Order Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Extreme Value Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Vector-Valued Functions and Their Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 17
3 The Implicit Function Theorem and its Applications 19
3.1 The Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Curves in the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Surfaces and Curves in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Transformations and Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Functional Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 Integral Calculus 25
4.1 Integration on the Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Integration in Higher Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Multiple Integrals and Iterated Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Change of Variables for Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Functions Defined by Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Improper Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
iii
, iv Contents
5 Line and Surface Integrals; Vector Analysis 34
5.1 Arc Length and Line Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Green’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Surface Area and Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Vector Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 The Divergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.6 Some Applications to Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.7 Stokes’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.8 Integrating Vector Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6 Infinite Series 43
6.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Series with Nonnegative Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Absolute and Conditional Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.4 More Convergence Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 Double Series; Products of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7 Functions Defined by Series and Integrals 49
7.1 Sequences and Series of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Integrals and Derivatives of Sequences and Series . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 The Complex Exponential and Trig Functions . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 Functions Defined by Improper Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 The Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.7 Stirling’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8 Fourier Series 59
8.1 Periodic Functions and Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Convergence of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Derivatives, Integrals, and Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . 61
8.4 Fourier Series on Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.5 Applications to Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.6 The Infinite-Dimensional Geometry of Fourier Series . . . . . . . . . . . . . . . . . . . . . 65