100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Complete Solution Applied Digital Signal Processing Theory and Practice 1st Edition Manual Questions & Answers with rationales (Chapter 2-15) $16.99   Add to cart

Exam (elaborations)

Complete Solution Applied Digital Signal Processing Theory and Practice 1st Edition Manual Questions & Answers with rationales (Chapter 2-15)

 70 views  0 purchase
  • Course
  • Signal Processing
  • Institution
  • Signal Processing

Applied Digital Signal Processing Theory and Practice 1st Edition Solution Manual Complete Solution Applied Digital Signal Processing Theory and Practice 1st Edition Manual Questions & Answers with rationales (Chapter 2-15) PDF File All Pages All Chapters Grade A+

Preview 4 out of 1218  pages

  • June 12, 2023
  • 1218
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
book image

Book Title:

Author(s):

  • Edition:
  • ISBN:
  • Edition:
  • Signal Processing
  • Signal Processing
avatar-seller
gradexam
CHAPTER 2
Discrete-Time SignalsandSystems
Tutorial Problems
1. (a) M ATLABscript:
% P0201a: Generate and plot unit sample
close all; clc
n = -20:40; % specifiy support of signal
deltan = zeros(1,length(n)); % define signal
deltan(n==0)=1;
% Plot:
hf = figconfg(’P0201a’,’small’);
stem(n,deltan,’fill’)
axis([min(n)-1,max(n)+1,min(deltan)-0.2,max(deltan) +0.2])
xlabel(’n’,’fontsize’,LFS); ylabel(’\delta[n]’,’font size’,LFS);
title(’Unit Sample \delta[n]’,’fontsize’,TFS)
−20−10 010203040−0.200.20.40.60.81
nδ[n]Unit Sample δ[n]
FIGURE2.1: unit sample δ[n].
1 CHAPTER2. Discrete-Time Signals and Systems 2
(b) MATLABscript:
% P0201b: Generate and plot unit step sequence
close all; clc
n = -20:40; % specifiy support of signal
un = zeros(1,length(n)); % define signal
un(n>=0)=1;
% Plot:
hf = figconfg(’P0201b’,’small’);
stem(n,un,’fill’)
axis([min(n)-1,max(n)+1,min(un)-0.2,max(un)+0.2])
xlabel(’n’,’fontsize’,LFS); ylabel(’u[n]’,’fontsize’ ,LFS);
title(’Unit Step u[n]’,’fontsize’,TFS)
−20−10 010203040−0.200.20.40.60.81
nu[n]Unit Step u[n]
FIGURE2.2: unit step u[n].
(c) MATLABscript:
% P0201c: Generate and plot real exponential sequence
close all; clc
n = -20:40; % specifiy support of signal
x1n = 0.8.^n; % define signal
% Plot:
hf = figconfg(’P0201c’,’small’);
stem(n,x1n,’fill’)
axis([min(n)-1,max(n)+1,min(x1n)-5,max(x1n)+5])
xlabel(’n’,’fontsize’,LFS); ylabel(’x_1[n]’,’fontsiz e’,LFS);
title(’Real Exponential Sequence x_1[n]’,’fontsize’,TF S)
(d) MATLABscript: CHAPTER2. Discrete-Time Signals and Systems 3
−20−10 010203040020406080
nx1[n]Real Exponential Sequence x1[n]
FIGURE2.3: real exponential signal x1[n] = (0.80)n.
% P0201d: Generate and plot complex exponential sequence
close all; clc
n = -20:40; % specifiy support of signal
x2n = (0.9*exp(j*pi/10)).^n; % define signal
x2n_r = real(x2n); % real part
x2n_i = imag(x2n); % imaginary part
x2n_m = abs(x2n); % magnitude part
x2n_p = angle(x2n); % phase part
% Plot:
hf = figconfg(’P0201d’);
subplot(2,2,1)
stem(n,x2n_r,’fill’)
axis([min(n)-1,max(n)+1,min(x2n_r)-1,max(x2n_r)+1])
xlabel(’n’,’fontsize’,LFS); ylabel(’Re\{x_2[n]\}’,’f ontsize’,LFS);
title(’Real Part of Sequence x_2[n]’,’fontsize’,TFS)
subplot(2,2,2)
stem(n,x2n_i,’fill’)
axis([min(n)-1,max(n)+1,min(x2n_i)-1,max(x2n_i)+1])
xlabel(’n’,’fontsize’,LFS); ylabel(’Im\{x_2[n]\}’,’f ontsize’,LFS);
title(’Imaginary Part of Sequence x_2[n]’,’fontsize’,TF S)
subplot(2,2,3)
stem(n,x2n_m,’fill’)
axis([min(n)-1,max(n)+1,min(x2n_m)-1,max(x2n_m)+1])
xlabel(’n’,’fontsize’,LFS); ylabel(’|x_2[n]|’,’fonts ize’,LFS);
title(’Magnitude of Sequence x_2[n]’,’fontsize’,TFS)
subplot(2,2,4) CHAPTER2. Discrete-Time Signals and Systems 4
stem(n,x2n_p,’fill’)
axis([min(n)-1,max(n)+1,min(x2n_p)-1,max(x2n_p)+1])
xlabel(’n’,’fontsize’,LFS); ylabel(’\phi(x_2[n])’,’f ontsize’,LFS);
title(’Phase of Sequence x_2[n]’,’fontsize’,TFS)
−20−10 010203040−4−202468
nRe{x2[n]}Real Part of Sequence x2[n]
−20−10 010203040−20246
nIm{x2[n]}Imaginary Part of Sequence x2[n]
−20−10 01020304002468
n|x2[n]|Magnitude of Sequence x2[n]
−20−10 010203040−4−2024
nφ(x2[n])Phase of Sequence x2[n]
FIGURE2.4: complex exponential signal x2[n] = (0.9ejπ/10)n.
(e) MATLABscript:
% P0201e: Generate and plot real sinusoidal sequence
close all; clc
n = -20:40; % specifiy support of signal
x3n = 2*cos(2*pi*0.3*n+pi/3); % define signal
% Plot:
hf = figconfg(’P0201e’,’small’);
stem(n,x3n,’fill’)
axis([min(n)-1,max(n)+1,min(x3n)-0.5,max(x3n)+0.5])
xlabel(’n’,’fontsize’,LFS); ylabel(’x_3[n]’,’fontsiz e’,LFS);
title(’Real Sinusoidal Sequence x_3[n]’,’fontsize’,TFS )

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller gradexam. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $16.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75323 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$16.99
  • (0)
  Add to cart