2 Principles of Pharmacology - Summary of Pharmacokinetic Calculations
1 view 0 purchase
Course
Pharmacology
Institution
Pharmacology
The object of the course is to teach students an approach to the study of pharmacologic agents. It is not intended to be a review of the pharmacopoeia. The focus is on the basic principles of biophysics, biochemistry, and physiology as to the mechanisms of drug action, biodistribution and metabolis...
Harvard-MIT Division of Health Sciences and Technology
HST.151: Principles of Pharmocology
Instructor: Dr. Carl Rosow
1
Summary of Pharmacokinetic Calculations
The following list was extracted from pharmacology lecture notes provided by Dr. Steven
Shafer. It summarizes and embellishes the pharmacokinetic concepts presented:
1. The rate of change (decrease) when drug is injected into a 1 compartment model is
dX
= −kX (first order process)
dt
2. The concentration following that injection is
C(t) = C0 e −kt where C0 is the initial concentration
3. The half-life, t½ (time required for a 50% decrease), is
0.693
t1 =
2 k
4. If you know the time required for a 50% decrease, the rate constant, k, is
0.693
k=
t1
2
5. The definition of concentration is
X
C= , where X is amount and V is volume
V
6. The concentration at time t following a bolus injection will be
X 0 − kt X
C(t) = e where 0 is the initial concentration
V V
7. If ClT is the total clearance (or flow) from a 1 compartment model, the rate at which
drug leaves can be calculated
dX
= C(Cl T )
dt
8. Since item 1 and item 7 are the same rate, it follows (after substituting X/V for C)
that
, 2
Cl T
k=
V
Substituting in equation 3, we get this important relationship
0.693(V)
t1 =
2 Cl T
So, as clearance (ClT) increases, k increases, and the half-life decreases. As volume
(V) increases, k decreases, and half-life increases.
9. During an infusion at rate k0, the concentrations are described by the equation
C(t) = C ss (1 − e −kt ) where Css is the concentration at steady-state.
10. The steady-state concentration can be calculated from infusion rate and clearance
k0
Css =
Cl T
11. Half-lives describe the time for a 50% decrease in concentration following a bolus,
and they also describe the time required to reach 50% of the steady-state
concentration during an infusion. Following a bolus, the concentrations will be at
25%, 13%, 6%, and 3% of the initial concentration following 2, 3, 4, and 5 half-lives,
respectively. During a constant-rate infusion, the concentration will reach 75%, 88%,
94%, and 97% of the steady-state concentration in 2, 3, 4, and 5 half-lives,
respectively.
What do you do with this? Well:
1. If you know the amount of drug injected (X0), and the concentration at time 0 (C0),
you can calculate the volume
X0
V=
C0
2. If you know X0, V, and k, then you can calculate the concentration at any given time t
X 0 − kt
C(t) = e
V
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller tandhiwahyono. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.79. You're not tied to anything after your purchase.