100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary theory calculus (2WBB0) for final exam $8.71   Add to cart

Summary

Summary theory calculus (2WBB0) for final exam

 40 views  0 purchase
  • Course
  • Institution

Summary theory calculus (2WBB0) for final exam

Preview 3 out of 22  pages

  • August 19, 2022
  • 22
  • 2021/2022
  • Summary
avatar-seller
2WBB0 – calculus
Summary fi nal exam

Contents
P.1 Real numbers and the real line........................................................................................4
Rules for inequalities........................................................................................................... 4
Intervals.............................................................................................................................. 4
Absolute value.................................................................................................................... 4
Properties of absolute values..............................................................................................4
Equations and inequalities involving absolute values..........................................................4
P.2 Cartesian coordinates in the plane...................................................................................5
Increments and distances...................................................................................................5
Distance D between P(x1, y1) and Q(x2, y2).........................................................................5
Straight lines....................................................................................................................... 5
Equations of lines................................................................................................................5
P.3 Graphs of quadratic equations.........................................................................................6
Circles and disks.................................................................................................................6
Equations of parabolas.......................................................................................................6
Shifting a graph...................................................................................................................6
P.4 functions and their graphs................................................................................................6
P.5 Combining functions to make new functions....................................................................7
Sums, differences, products, quotients and multiples.........................................................7
Composite functions...........................................................................................................7
Piecewise defined functions................................................................................................7
P.6 Polynomials and rational functions...................................................................................7
The factor theorem..............................................................................................................7
Roots and factors of quadratic polynomials.........................................................................8
P.7 the trigonometric functions...............................................................................................8
Some useful identities.........................................................................................................8
Other trigonometric functions..............................................................................................9
Sine law.............................................................................................................................. 9
Cosine law.......................................................................................................................... 9
1.1 Examples of velocity, growth rate, and area...................................................................10
The area of a circle........................................................................................................... 10
Average velocity................................................................................................................ 10
1.2 Limits of functions........................................................................................................... 10
One-sided limits................................................................................................................ 10

, The squeeze theorem.......................................................................................................10
1.3 Limits at infinity and infinite limits....................................................................................10
Limits at infinity and negative infinity.................................................................................10
Limits at infinity for rational functions................................................................................10
Infinite limits...................................................................................................................... 11
1.4 Continuity....................................................................................................................... 11
Continuity at an interior point............................................................................................11
Right and left continuity.....................................................................................................11
2.1 Tangent lines and their slopes........................................................................................12
The slope of a curve......................................................................................................... 12
Normals............................................................................................................................ 12
2.2 The derivative................................................................................................................. 12
Right derivative................................................................................................................. 12
Left derivative................................................................................................................... 12
2.3 Differentiation rules.........................................................................................................13
Differentiation rules........................................................................................................... 13
The reciprocal rule............................................................................................................ 13
The quotient rule............................................................................................................... 13
2.4 The chain rule................................................................................................................. 13
2.5 Derivatives of trigonometric functions.............................................................................13
An important trigonometric limit.........................................................................................14
Derivative of sine function.................................................................................................14
Derivative of cosine function.............................................................................................14
Derivatives of other trigonometric functions......................................................................14
2.8 The mean-value theorem................................................................................................14
3.1 Inverse functions............................................................................................................ 15
3.2 Exponential and logarithmic functions............................................................................15
Laws of logarithms............................................................................................................ 15
3.5 The inverse trigonometric functions................................................................................15
4.3 Indeterminate forms........................................................................................................16
4.4 Linear approximation......................................................................................................17
4.10 Taylor polynomials........................................................................................................17
5.4 Properties of the definite integral....................................................................................18
Mean-value theorem for integrals......................................................................................18
5.5 The fundamental theorem of calculus.............................................................................18
Part I................................................................................................................................. 18
Part II................................................................................................................................ 19

, 5.6 The method of substitution.............................................................................................19
Integrals of tangent, cotangent, secant, and cosecant......................................................19
6.1 Integration by parts.........................................................................................................20
6.2 Techniques of integration...............................................................................................20
6.5 Improper integrals........................................................................................................... 20
Improper integrals of type I...............................................................................................20
Improper integrals of type II..............................................................................................20
7.9 First-order differential equations.....................................................................................21
Separable equations......................................................................................................... 21
First-order linear equations...............................................................................................21

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jbtue. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.71. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75759 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.71
  • (0)
  Add to cart