100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Instructor's Solutions Manual Fundamentals of Heat and Mass Transfer 7th Edition $35.99   Add to cart

Exam (elaborations)

Instructor's Solutions Manual Fundamentals of Heat and Mass Transfer 7th Edition

 76 views  0 purchase
  • Course
  • Institution
  • Book

Instructor's Solutions Manual Fundamentals of Heat and Mass Transfer 7th Edition

Preview 4 out of 2639  pages

  • July 11, 2023
  • 2639
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
avatar-seller
, PROBLEM 1.1

KNOWN: Thermal conductivity, thickness and temperature difference across a sheet of rigid
extruded insulation.

FIND: (a) The heat flux through a 2 m × 2 m sheet of the insulation, and (b) The heat rate
through the sheet.

SCHEMATIC:

A = 4 m2


W
k = 0.029
m ⋅K qcond

T1 – T2 = 10˚C


T1 T2


L = 20 mm
x

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS: From Equation 1.2 the heat flux is

dT T -T
q′′x = -k =k 1 2
dx L

Solving,

W 10 K
q"x = 0.029 ×
m⋅K 0.02 m

W
q′′x = 14.5 <
m2

The heat rate is

W
q x = q′′x ⋅ A = 14.5 2
× 4 m 2 = 58 W <
m

COMMENTS: (1) Be sure to keep in mind the important distinction between the heat flux
(W/m2) and the heat rate (W). (2) The direction of heat flow is from hot to cold. (3) Note that
a temperature difference may be expressed in kelvins or degrees Celsius.

, PROBLEM 1.2

KNOWN: Thickness and thermal conductivity of a wall. Heat flux applied to one face and
temperatures of both surfaces.
FIND: Whether steady-state conditions exist.
SCHEMATIC:

L = 10 mm

T2 = 30°C

q” = 20 W/m2
q″cond


T1 = 50°C k = 12 W/m·K




ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal energy
generation.

ANALYSIS: Under steady-state conditions an energy balance on the control volume shown is

′′ = qout
qin ′′ = qcond
′′ = k (T1 − T2 ) / L = 12 W/m ⋅ K(50°C − 30°C) / 0.01 m = 24,000 W/m 2


Since the heat flux in at the left face is only 20 W/m2, the conditions are not steady state. <

COMMENTS: If the same heat flux is maintained until steady-state conditions are reached, the
steady-state temperature difference across the wall will be

ΔT = q′′L / k = 20 W/m 2 × 0.01 m /12 W/m ⋅ K = 0.0167 K

which is much smaller than the specified temperature difference of 20°C.

, PROBLEM 1.3
KNOWN: Inner surface temperature and thermal conductivity of a concrete wall.
FIND: Heat loss by conduction through the wall as a function of outer surface temperatures ranging from
-15 to 38°C.
SCHEMATIC:




ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3)
Constant properties.
ANALYSIS: From Fourier’s law, if q′′x and k are each constant it is evident that the gradient,
dT dx = − q′′x k , is a constant, and hence the temperature distribution is linear. The heat flux must be
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends
only weakly on temperature. The heat flux and heat rate when the outside wall temperature is T2 = -15°C
are

q′′x = − k
dT
=k
T1 − T2
= 1W m ⋅ K
25o C − −15o C
= 133.3 W m 2 .
( )
(1)
dx L 0.30 m

q x = q′′x × A = 133.3 W m 2 × 20 m 2 = 2667 W . (2) <
Combining Eqs. (1) and (2), the heat rate qx can be determined for the range of outer surface temperature,
-15 ≤ T2 ≤ 38°C, with different wall thermal conductivities, k.

3500


2500
Heat loss, qx (W)




1500


500


-500


-1500
-20 -10 0 10 20 30 40

Ambient
Outside air temperature, T2 (C)
surface

Wall thermal conductivity, k = 1.25 W/m.K
k = 1 W/m.K, concrete wall
k = 0.75 W/m.K


For the concrete wall, k = 1 W/m⋅K, the heat loss varies linearly from +2667 W to -867 W and is zero
when the inside and outer surface temperatures are the same. The magnitude of the heat rate increases
with increasing thermal conductivity.
COMMENTS: Without steady-state conditions and constant k, the temperature distribution in a plane
wall would not be linear.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller QuizMerchant. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $35.99. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75619 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$35.99
  • (0)
  Add to cart